
15618 Project Report

Optimizing an Object Tracker on an Android smartphone.

-Ashutosh Tadkase(atadkase) -Shreedutt Hegde(shreeduh)

(Special Credit mention- Peter Abeles, original author of BoofCV software suite, who we worked

with during the course of project, and provided extensive support and guidance)

 We chose to optimize the circulant object tracker component of the

open source CV software suite, BoofCV, written purely in Java, as an

optimized single threaded code, and integrated for Android as well. On

our initial profiling, we found out the object tracker could process at

~30 fps performance on a typical Android smartphone. The inspiration

for parallelism also came from the computationally heavy functions like

FFT, Dense Gaussian Kernels, and offline learning performed

repetitively over frames to achieve a robust tracking.

Plan was to use the hardware resources offered by modern

smartphone SoCs, specifically by ARM-based Qualcomm SoCs, like DSP,

GPU, Multiple CPU cores, each with NEON SIMD support, to achieve

heterogenous parallelism.

• Planned to use native C/C++ parallel frameworks – OpenCL and

Hexagon SDK, to offload computations to GPU and DSP.

• Use RenderScript and Java multithreaded interface for multi-core

parallelism.

How we started?

• Extracted the object tracker application from the BoofCV suite, as

a standalone desktop Java project.

• Ported this Java code to an Android app , which grabs frames from

an image file, initializes tracker position around an object, and

keeps tracking it.

The desktop visualizer application that plays the video file with tracker results of

tracker application.

Axis of parallelism

• Due to offline learning, inter-frame pipelining or direct parallel processing

of tracking pipeline across multiple frames was not possible.

• Even parallel pipelining of computations happening on a single frame was

not possible, due to sequential nature of tracking algorithm.

• All heavy computations happen over a small 64x64 tracking window for

each frame.

• So try and use the pixel-data parallelism over this small window.

Android platforms chosen

• LG G5 quad-core CPU with Hexagon 600 DSP, and Adreno 530 GPU.

• Moto G4 plus octa-core CPU with Hexagon 500 DSP, and Adreno 405 GPU.

Native frameworks integration with Java-The hardest

part.

The major motivation of Android is it’s app portability on large variety of

hardware devices, abstracting hardware implementations through Java platform.

The hardware specific optimizations require Java integration of native

frameworks in C/C++, namely OpenCL for GPU, Hexagon SDK for DSP, and

OpenMP/RenderScript for parallelism.

All such Java-to-native code migration, requires the use of JNI interface, which we

quantified to conclude as having a very high overhead. The transform of objects

from Java to C/C++ code space is particularly expensive and this communication

to utilize heterogenous resources, has significantly impacted our design

considerations.

RenderScript

Renderscript is an Android framework, that offloads computations to

GPU and CPU under the hood, by using JNI interface.

The graph above shows the overhead of a simple array reduction kernel

being parallelized using RenderScript, against a sequential version, and

plotted against the array size. The use of render script kicks in

apparently for sizes beyond 5th power of 10.

OpenCL

The graph above shows the OpenCL implementation of FFT(GPU

accelerated) compared to the same FFT algorithm being parallelized

using Java multithread library. The FFT shown above is done for 64

elements, being used in tracking window of size 64x64. As clearly

evident, OpenCL, being a native framework, that uses JNI for

implementation, carries a significant overhead baggage, compared to

simple multi-core CPU thread parallelism(8 threads). Since the FFT was

being done several times in the object tracker application, we obtained

a speedup of tracker from 30fps to 40 fps, using multithreaded Java

library(Note, this is a purely Java library without any JNI overhead).

So how expensive is this JNI?

The above graph shows the JNI call overhead for an image dot product

computation, using the OpenMP framework, as compared to a single

threaded Java implementation. The overhead was too much for us to

use OpenMP efficiently for accelerating the object tracker

computations.

But isn’t speedup the real deal?

Though we couldn’t achieve a significant speedup of the object

tracker(30 fps to 40 fps) due to limitations as discussed before, we have

successfully integrated following external frameworks: OpenCL,

OpenMP, RenderScript(GPU+CPU) and Neon library(for ARM-SIMD) for

Android through JNI interfaces. OpenCV and FFMPEG for frame

grabbing and several other CV functions have also been integrated.

Our application, along with the desktop visualizer tool, serves as a

benchmarking tool, for any kind of heterogenous workload evaluation

for Android devices. A developer using our codebase to start off need

not go through the painful integration of these native frameworks with

Android, and then start actual parallelization. Native library support has

been added for x86 and ARM based Android devices.

Conclusion

The android platform is great because of its

portability offered by it’s software stack above the

kernel, which abstracts much of device details.

However to use device specific acceleration, like

GPU or DSP, we need to go native C/C++ from

Java, and that’s where the android app would lose

it’s portability, but more importantly such offloads

would need to be really computationally intensive

(may be not the small tracking window of object

tracker), to amortize the JNI overheads quantified

in this project. The JNI overhead limited us to use

pure-Java multithreaded library to extract data

parallelism in the object tracker.

